Frames and orthonormal bases for variable windowed Fourier transforms
نویسندگان
چکیده
We generalize the windowed Fourier transform to the variable-windowed Fourier transform. This generalization brings the Gabor transform and the wavelet transform under the same framework. Using frame theory we characterize frames and orthonormal bases for the variable windowed Fourier series (VWFS). These characterizations are formulated explicitly in terms of window functions. Therefore they can serve as guidelines for designing windows for the VWFS. We introduce the notion of "complete orthogonal support" and, with the help of this notion, we construct a class of orthonormal VWFS bases for Z(R).
منابع مشابه
Digital Implementation of Ridgelet Packets
The Ridgelet Packets library provides a large family of orthonormal bases for functions f(x, y) in L(dxdy) which includes orthonormal ridgelets as well as bases deriving from tilings reminiscent from the theory of wavelets and the study of oscillatory Fourier integrals. An intuitively appealing feature: many of these bases have elements whose envelope is strongly aligned along specified ‘ridges...
متن کاملG-Frames, g-orthonormal bases and g-Riesz bases
G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.
متن کاملCharacterizations of Gabor Systems via the Fourier Transform
We give characterizations of orthogonal families, tight frames and orthonormal bases of Gabor systems. The conditions we propose are stated in terms of equations for the Fourier transforms of the Gabor system’s generating functions.
متن کاملOn the Construction of Discrete Directional Wavelets: HDWT, Space-Frequency Localization, and Redundancy Factor
We address the issue of constructing directional wavelet bases. After considering orthonormal directional wavelets whose Fourier transforms are indicator functions, we give a construction of directional wavelets with fast decay that is based on an hexagonal filter bank tree. An implementation for squarely sampled images and numerical results are presented. Then we discuss the frequency localiza...
متن کامل